3.1.5 \(\int \frac {A+B \log (e (\frac {a+b x}{c+d x})^n)}{a g+b g x} \, dx\) [5]

3.1.5.1 Optimal result
3.1.5.2 Mathematica [A] (verified)
3.1.5.3 Rubi [A] (verified)
3.1.5.4 Maple [F]
3.1.5.5 Fricas [F]
3.1.5.6 Sympy [F]
3.1.5.7 Maxima [F]
3.1.5.8 Giac [F]
3.1.5.9 Mupad [F(-1)]

3.1.5.1 Optimal result

Integrand size = 33, antiderivative size = 84 \[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{b g}+\frac {B n \operatorname {PolyLog}\left (2,1+\frac {b c-a d}{d (a+b x)}\right )}{b g} \]

output
-ln((a*d-b*c)/d/(b*x+a))*(A+B*ln(e*((b*x+a)/(d*x+c))^n))/b/g+B*n*polylog(2 
,1+(-a*d+b*c)/d/(b*x+a))/b/g
 
3.1.5.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.20 \[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\frac {\log (g (a+b x)) \left (-B n \log (g (a+b x))+2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+B n \log \left (\frac {b (c+d x)}{b c-a d}\right )\right )\right )+2 B n \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{-b c+a d}\right )}{2 b g} \]

input
Integrate[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x),x]
 
output
(Log[g*(a + b*x)]*(-(B*n*Log[g*(a + b*x)]) + 2*(A + B*Log[e*((a + b*x)/(c 
+ d*x))^n] + B*n*Log[(b*(c + d*x))/(b*c - a*d)])) + 2*B*n*PolyLog[2, (d*(a 
 + b*x))/(-(b*c) + a*d)])/(2*b*g)
 
3.1.5.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2941, 2858, 27, 2778, 2005, 2752}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A}{a g+b g x} \, dx\)

\(\Big \downarrow \) 2941

\(\displaystyle \frac {B n (b c-a d) \int \frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right )}{(a+b x) (c+d x)}dx}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

\(\Big \downarrow \) 2858

\(\displaystyle \frac {B n (b c-a d) \int \frac {b \log \left (-\frac {b c-a d}{d (a+b x)}\right )}{(a+b x) \left (b \left (c-\frac {a d}{b}\right )+d (a+b x)\right )}d(a+b x)}{b^2 g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {B n (b c-a d) \int \frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right )}{(a+b x) (b c-a d+d (a+b x))}d(a+b x)}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

\(\Big \downarrow \) 2778

\(\displaystyle -\frac {B n (b c-a d) \int \frac {(a+b x) \log \left (-\frac {b c-a d}{d (a+b x)}\right )}{b c-a d+d (a+b x)}d\frac {1}{a+b x}}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

\(\Big \downarrow \) 2005

\(\displaystyle -\frac {B n (b c-a d) \int \frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right )}{d+\frac {b c-a d}{a+b x}}d\frac {1}{a+b x}}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

\(\Big \downarrow \) 2752

\(\displaystyle \frac {B n \operatorname {PolyLog}\left (2,\frac {b c-a d}{d (a+b x)}+1\right )}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{b g}\)

input
Int[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x),x]
 
output
-((Log[-((b*c - a*d)/(d*(a + b*x)))]*(A + B*Log[e*((a + b*x)/(c + d*x))^n] 
))/(b*g)) + (B*n*PolyLog[2, 1 + (b*c - a*d)/(d*(a + b*x))])/(b*g)
 

3.1.5.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2005
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m 
+ n*p)*(b + a/x^n)^p*Fx, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && Neg 
Q[n]
 

rule 2752
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLo 
g[2, 1 - c*x], x] /; FreeQ[{c, d, e}, x] && EqQ[e + c*d, 0]
 

rule 2778
Int[((a_.) + Log[(c_.)*(x_)^(n_)]*(b_.))/((x_)*((d_) + (e_.)*(x_)^(r_.))), 
x_Symbol] :> Simp[1/n   Subst[Int[(a + b*Log[c*x])/(x*(d + e*x^(r/n))), x], 
 x, x^n], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[r/n]
 

rule 2858
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_ 
.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))^(r_.), x_Symbol] :> Simp[1/e   Subst[In 
t[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x, d + 
e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - 
d*g, 0] && (IGtQ[p, 0] || IGtQ[r, 0]) && IntegerQ[2*r]
 

rule 2941
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(-Log[-(b*c - a*d)/(d*(a + b* 
x))])*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/g), x] + Simp[B*n*((b*c - a*d 
)/g)   Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x], x] /; 
 FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - 
 a*g, 0]
 
3.1.5.4 Maple [F]

\[\int \frac {A +B \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )}{b g x +a g}d x\]

input
int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g),x)
 
output
int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g),x)
 
3.1.5.5 Fricas [F]

\[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A}{b g x + a g} \,d x } \]

input
integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g),x, algorithm="frica 
s")
 
output
integral((B*log(e*((b*x + a)/(d*x + c))^n) + A)/(b*g*x + a*g), x)
 
3.1.5.6 Sympy [F]

\[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\frac {\int \frac {A}{a + b x}\, dx + \int \frac {B \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}}{a + b x}\, dx}{g} \]

input
integrate((A+B*ln(e*((b*x+a)/(d*x+c))**n))/(b*g*x+a*g),x)
 
output
(Integral(A/(a + b*x), x) + Integral(B*log(e*(a/(c + d*x) + b*x/(c + d*x)) 
**n)/(a + b*x), x))/g
 
3.1.5.7 Maxima [F]

\[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A}{b g x + a g} \,d x } \]

input
integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g),x, algorithm="maxim 
a")
 
output
B*((log(b*x + a)*log((b*x + a)^n) - log(b*x + a)*log((d*x + c)^n))/(b*g) + 
 integrate((b*d*x*log(e) + b*c*log(e) - (b*c*n - a*d*n)*log(b*x + a))/(b^2 
*d*g*x^2 + a*b*c*g + (b^2*c*g + a*b*d*g)*x), x)) + A*log(b*g*x + a*g)/(b*g 
)
 
3.1.5.8 Giac [F]

\[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A}{b g x + a g} \,d x } \]

input
integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g),x, algorithm="giac" 
)
 
output
integrate((B*log(e*((b*x + a)/(d*x + c))^n) + A)/(b*g*x + a*g), x)
 
3.1.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{a g+b g x} \, dx=\int \frac {A+B\,\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )}{a\,g+b\,g\,x} \,d x \]

input
int((A + B*log(e*((a + b*x)/(c + d*x))^n))/(a*g + b*g*x),x)
 
output
int((A + B*log(e*((a + b*x)/(c + d*x))^n))/(a*g + b*g*x), x)